Alkaline sphingomyelinase: an old enzyme with novel implications.
نویسنده
چکیده
Alkaline sphingomyelinase (alk-SMase) is present in the intestinal tract and additionally human bile. It hydrolyses sphingomyelin in both intestinal lumen and the mucosal membrane in a specific bile salt dependent manner. The enzyme was discovered 36 years ago but got real attention only in the last decade, when sphingomyelin metabolism was realized to be a source of multiple lipid messengers, and when dietary sphingomyelin was found to inhibit colonic tumorigenesis in animals. The enzyme shares no structural similarity with other SMases and belongs to the nucleotide pyrophosphatase/phosphodiesterase family. The enzyme is of specific properties, such as bile salt dependency, trypsin resistance, high stability, and tissue specific expression. In the colon, the enzyme may play antiproliferative and antiinflammatory roles through generating ceramide, reducing the formation of lysophosphatidic acid, and inactivating platelet-activating factor. The enzyme is down regulated in human long-standing ulcerative colitis and colonic adenocarcinoma, and mutation of the enzyme has been found in colon cancer cells. In the small intestine, alk-SMase is the key enzyme for sphingomyelin digestion. The hydrolysis of sphingomyelin may affect the cholesterol uptake and have impact on sphingomyelin levels in plasma lipoproteins. The review summarizes the new information of alk-SMase from biochemical, cell and molecular biological studies in the last decade and evaluates its potential implications in development of colon cancer, inflammatory bowel diseases, and atherosclerosis.
منابع مشابه
Detection of alkaline sphingomyelinase activity in human stool: proposed role as a new diagnostic and prognostic marker of colorectal cancer.
OBJECTIVES Intestinal alkaline sphingomyelinase, by exerting a major role in dietary sphingomyelin digestion, is responsible for the generation of messengers able to trigger the rapid turnover and apoptosis in intestinal epithelial cells. Markedly reduced mucosal alkaline sphingomyelinase activity has been associated with human colorectal neoplasms. The aim of this study was to analyze the alka...
متن کاملAlkaline sphingomyelinase (NPP7) in hepatobiliary diseases: A field that needs to be closely studied
Alkaline sphingomyelinase cleaves phosphocholine from sphingomyelin, platelet-activating factor, lysophosphatidylcholine, and less effectively phosphatidylcholine. The enzyme shares no structure similarities with acid or neutral sphingomyelinase but belongs to ecto-nucleotide pyrophosphatase/phosphodiesterase (NPP) family and therefore is also called NPP7 nowadays. The enzyme is expressed in th...
متن کاملChanges of activity and isoforms of alkaline sphingomyelinase (nucleotide pyrophosphatase phosphodiesterase 7) in bile from patients undergoing endoscopic retrograde cholangiopancreatography
BACKGROUND Alkaline sphingomyelinase (NPP7) is an ecto-enzyme expressed in intestinal mucosa, which hydrolyses sphingomyelin (SM) to ceramide and inactivates platelet activating factor. It is also expressed in human liver and released in the bile. The enzyme may have anti-tumour and anti-inflammatory effects in colon and its levels are decreased in patients with colon cancer and ulcerative coli...
متن کاملMolecular modeling of human alkaline sphingomyelinase
Alkaline sphingomyelinase, which is expressed in the human intestine and hydrolyses sphingomyelin, is a component of the plasma and the lysosomal membranes. Hydrolase of sphingomyelin generates ceramide, sphingosine, and sphingosine 1-phosphate that have regulatory effects on vital cellular functions such as proliferation, differentiation, and apoptosis. The enzyme belongs to the Nucleotide Pyr...
متن کاملFunctional studies of human intestinal alkaline sphingomyelinase by deglycosylation and mutagenesis.
Intestinal alk-SMase (alkaline sphingomyelinase) is an ectoenzyme related to the NPP (nucleotide phosphodiesterase) family. It has five potential N-glycosylation sites and predicated transmembrane domains at both the N- and C-termini. The amino acid residues forming the two metal-binding sites in NPP are conserved, and those of the active core are modified. We examined the functional changes of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1761 3 شماره
صفحات -
تاریخ انتشار 2006